

The Coordinated Regional Downscaling Experiment CORDEX

Colin Jones Rossby Centre, SMHI

General Aims of CORDEX

Generate a coordinated ensemble of high-resolution, historical/future regional climate projections for land-regions of the globe sampling; multiple GCM/RCP/RCM/ESDs methods. 1st phase uses CMIP5 historical-projection runs and ERA-interim boundary data

Make data accessible & useable in common format/file structure Now ~99% same as CMIP5 and compatible with ESG2 (SMHI Africa-CORDEX data has been tested on ESG2, will be publicly broadcast late 2012)

Foster coordination between downscaling efforts & encourage local participation, in generating, analysing & communicating potential regional climate change and associated uncertainties & risks

Initial emphasis on African climate & IAV: START/WCRP sponsored 3 analysis/IAV workshops for an Africa-CORDEX team in 2011–12

Similar activities starting for East Asia, South/Central America and South Asia (this week)

CORDEX DOMAINS (also Arctic & Antarctica)

- 12 domains with a resolution of 0.44° (approx. 50×50km²)
- Initial Focus on Africa
- •High resolution ~0.11°x0.11° for Europe (~6 institutions)

Examples from Africa-CORDEX

Evaluation of multi-RCM ERA-interim driven ensemble

JAS precipitation Africa-CORDEX RCMs using ERA-interim

JAS precipitation Africa-CORDEX RCMs using ERA-interim

2 3 n

West African monsoon: Annual cycle of WAM poleward progression

Interannual variation of west Africa rainfall in Africa-CORDEX RCMs forced by ERA-interim

.

Africa-CORDEX RCM simulations driven by CMIP5 GCMs Evaluation of the historical period

SMHI- RCA4 Africa CORDEX 50km matrix

GCM	Historical 1950-2005	RCP8.5 2006-2100	RCP4.5 2006-2100	RCP2.6 2006-2100
EC-Earth	v	v	v	~
HadGEM	v	v	v	v
CNRM	~	~	v	
MIROC5	v	 ✓ 	v	
NorESM	 ✓ 	 ✓ 	v	
CanESM	v	~	v	
GFDL-ESM	v	v	v	
MPI-ESM	v	v	v	~
IPSL-CM	\checkmark	\checkmark	\checkmark	
CSIRO	M	M	$\mathbf{\overline{A}}$	
NCAR			V	

✓ Completed ✓ Running ✓ Planned ☑ Possible

Systematic SST errors from CMIP5 GCM historical simulations

GCM precipitation errors reflect the SST error

RCA4 Africa-CORDEX JAS mean precipitation

Spread generally reduced in RCA4(GCM) compared to GCMs A clear signature of RCA4 physics seen irrespective of forcing GCMs

Annual Cycle of precipitation RCA4(GCM/ERA-int) and CMIP5 GCMs

Annual Cycle of 2m temperature RCA4(GCM/ERA-int) and CMIP5 GCMs

Africa-CORDEX RCM simulations driven by CMIP5 GCMs Evaluating & understanding regional climate change signals

30 yr annual mean, RCA4 ensemble mean temperature change

A state of the sta

Seasonal mean precipitation change RCP8.5 2071-2100 vs 1971-2000

JFM

-80

-60

-40

-20

0

20

40

60

80

Same RCM different GCM boundaries: Precipitation changes

Precipitation (pr) | JAS | CTL: 1971-2000 | SCN: 2071-2100 | rcp85

Precipitation (pr) | OND | CTL: 1971-2000 | SCN: 2071-2100 | rcp85

P-E (pr-evspsbl) | OND | CTL: 1971-2000 | SCN: 2071-2100 | rcp85 ENS. MEAN (CTL) RCA4 (CNRM-CM5) ENS. MEAN RCA4 (CanESM2) 6 4 2 P-E absolute change 0 -2 RCP85 end of century RCA4 (EC-EARTH) RCA4 (NorESM1-M) RCA4 (MIROC5) RCA4 (HadGEM2-ES) -4 -6 mm/day RCA4 (MPI-ESM-LR) RCA4 (GFDL-ESM2M) P-E (pr-evspsbl) | OND | CTL: 1971-2000 | SCN: 2071-2100 | rcp85 RCA4 (CanESM2) ENS. MEAN (CTL) RCA4 (CNRM-CM5) ENS. MEAN mm/day SCI 3 -2 -1 0 -2 RCA4 (NorESM1-M) RCA4 (MIROC5) RCA4 (EC-EARTH) RCA4 (HadGEM2-ES) -4 -6 mm/day P-E percent change RCA4 (GFDL-ESM2M) RCA4 (MPI-ESM-LR) RCP85 end of century % (SCN-CTL)/CTL 20 -80 -60 -40 -20 40 60 80 n

Soil moisture (mrso) | JAS | CTL: 1971-2000 | SCN: 2071-2100 | rcp85

Soil moisture (mrso) | OND | CTL: 1971-2000 | SCN: 2071-2100 | rcp85

And now South Asia.....